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I see by the program that I have been allotted 45 minutes for this introductory talk.  I am
embarrassed.  I don’t think I have ever talked for that long in my entire life.  I don’t intend
breaking a lifetime habit now, and so I expect to return to you a little of that time for whatever
better uses you may make of it.

Let’s start by admitting that this field of criticality control is approaching a state that I saw
some years back might exist in a remote future.  That would be a world in which very few people
would have first-hand experience with the phenomenon of criticality, and yet it would be
necessary to arrive at conclusions based on a full understanding of criticality.  In my mind, that
would have been a very difficult if not impossible situation.

In the golden age of criticality studies, there were numerous facilities devoted to
experiments on critical systems.  I count some nineteen facilities at which such experiments were
taking place in the United States, all operating over the same or nearly the same time period.  A
great many of these had the capability for conducting several critical experiment programs at the
same time.  You are all familiar with the existence of several kivas at the Pajarito Site at Los
Alamos, and many of you will remember the lineup of critical experiment facilities at Argonne’s
two locations, Argonne East and Argonne West.  But many others of the nineteen sites were also
multiple in nature.

That meant that throughout the country there were numerous individuals who had real-life
involvement with criticality almost every working day, who therefore developed what I would call
a “natural feel” for the conditions necessary to sustain a neutron chain reaction.  That situation
first began to decay in the commercial sector, where the neutron physics design of nuclear power
plants became much more repetitive, and innovations became infrequent.  Neutron physics at and
near design points became reasonably well understood, so that computer codes benchmarked
against existing designs and against previous physics experiments were dependable for most
purposes of design.  Treatment of such other matters as effects of fission products and behavior
with burnable poisons could be gathered from reactor operating history.  That caused reactor
design companies, subject to the pressure of competition and the corresponding need to save
money on design, to shut down their physics experiment facilities.  They came in time to depend
entirely for their neutron physics on the large systems of reactor design codes which by that time
were well developed, at least for the region of conditions against which they had been
benchmarked.  I became concerned at the prospect of a future in which reactors would be
designed without input from physicists with a fully rounded understanding of the implications of
the chain-reacting system with all its complex feedbacks.  After all, a calculation is at best as good
as the phenomena included in the analysis and their proper analytical description.  If you miss
something or incorrectly describe it, you will get wrong answers.

Fortunately, operation on-line with real power reactor systems seem to have provided
enough on-the-job education to meet the needs of the static industry.  But the problem of loss of
capability did not end with shutdown of the industry’s experimental research facilities.  One-by-
one, the critical assembly facilities that had been integral parts of the programs of the Federal
government were also closed down.  Until a few years ago only about one and a half remained. 
By that I mean there was the fully operating facility at Los Alamos, and there was also a capability



2

sometimes called on at the Sandia Laboratory in Albuquerque.  Even ten years ago, when we at
Brookhaven along with colleagues at Babcock-Wilcox were developing a concept for a new
reactor system and needed critical experiments to prove out some very difficult physics, we had to
go to the facility at the Sandia Laboratory to have the experiments done.

Fortunately, and as is evident from the attendance at this workshop, there are still people
around who have been involved in experimental research in the past.  In time, however, that will
no longer be the case.  Reactor design capability will certainly suffer then, for I am sure that the
drought in orders for nuclear plants will end one day, and nuclear will come back in a big way. 
Before that, however, the effect will be felt increasingly on the activities that are the concern of
this workshop, which are the modes of control of fissionable material so as to preclude
inadvertent criticality.

Of course, I have been invited to speak here because of my current position as a member
of the Defense Nuclear Facilities Safety Board.  But the remarks I make rest on a firm base of
long-term activity in this field.  For those who do not know of my background in this respect, I
shall simply state some of it as background for what follows.  I conducted research along with a
group that I formed at Brookhaven National Laboratory in 1952 to study chain-reacting systems.  
We started with measurements of the neutron multiplying characteristics of subcritical assemblies
of slightly enriched uranium rods in a light water moderator.  This small experimental program
grew into an extensive one providing parametric subcritical and critical studies of assemblies of
varied fuel and moderators, including metallic and oxide fuel, and other fuel compositions such as
uranium-plutonium alloy and U-233-thorium alloy.  That set of studies lasted about 15 years.  We
also conducted design studies of several research reactor systems including the High Flux Beam
Reactor and the Medical Research Reactor at Brookhaven.  A small group of about half a dozen
of us qualified to man the console of a critical assembly conducted some thousands of critical
experiments.  Because of our intimate familiarity with multiplying systems we also took over
criticality control for the vaults used at Brookhaven for storing fissionable material.  On-site were
five vaults containing varied material, including a lot of natural uranium, slightly enriched
uranium, several hundred kilograms of highly enriched uranium, and varying amounts of
plutonium and U-233.  For a time, a colleague and I also worked as advisors on criticality control
at a nuclear fuel fabrication plant operated by United Nuclear in New Haven, Connecticut, where
a substantial amount of fuel was fabricated for the nuclear navy.  We set up a complete concept of
criticality control for that plant, embodying concepts that I will be expounding on later in my
remarks.

We never had an inadvertent criticality at Brookhaven.  During the period of our activity,
however, a number of criticality accidents occurred throughout the country, including three where
fatalities occurred.  There were two chemical process accidents, one at Los Alamos and the other
at Wood River Junction, Rhode Island, each fatal to a chemical technician, and the SL-1 accident
in Idaho, where three reactor operators were killed.  Note that the first two accidents occurred
during cleanup of waste containing fissile material, an activity that is now taking place at a number
of the facilities of the Department of Energy.
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Over the same period there were also a number of inadvertent criticalities at experimental
facilities of the Atomic Energy Commission.  All of these took place at facilities with designs that
had profited from the lessons of the two wartime criticality fatalities at Los Alamos during the
Manhattan Project, and a severe exposure of experimental staff in an accident at the Argonne
National Laboratory.  Most of these later accidents occurred under conditions where operating
personnel were well protected from released radiation, usually by shielding.

Among my friends conducting similar experimental programs at other facilities were some
who said they were not very concerned about unplanned criticality if it took place under
conditions where personnel were adequately protected.  One good friend said that a facility that
did not have an accident once in a while was not working at its optimum.  I have to admit that
there is logic in that position, or at least there was a lot of logic in it at one time.

However, that is a position that cannot be defended at this time in light of prevailing
attitudes on nuclear matters. A criticality accident in which no one is even slightly injured would
generate enough fright through reporting by the press that the consequences on many important
programs would be unacceptable.  Moreover, the nature of the Department of Energy’s
operations has changed substantially since then.  Now we are again most concerned about the
possibility of a criticality during cleanup operations.  In such circumstances, the shielding to
protect workers would no longer be present.  Severe injury or even fatality would be real
possibilities.  In the most general way, a criticality accident is now a complete no-no.  Such an
event must not be allowed to happen.  That is the reason for the strong interest of the Defense
Nuclear Facilities Safety Board in ensuring continued viability of criticality control disciplines, and
it is also the principal force behind having this workshop.

We should talk about the reasons why criticality control today seems to require such
extensive resources in DOE.  Certainly the reason is the difficulty in solving the analytical
problems that are posed.  There are three principal causes of the difficulty.  One is the variety of
situations that must be analyzed.  The second is the complex and varied geometries that have to
be analyzed.  The third is the lack of good information on the composition of so much of the
material in question.  I could give many examples of real world situations embodying all three
problems.  A couple will suffice.  Many facilities have to ensure freedom from criticality accidents
during storage of miscellaneous containers of contaminated material that might hold appreciable
amounts of fissionable material even though they are not likely to contain much fissionable
material.  Uncertainty as to the contents leads to use of very conservative protective measures. 
Containers will also vary in size and geometrical shape, and configurations may tend to change
now and then as new material is brought in and as storage arrangements change.

A second example is afforded by conditions that arise when glove boxes formerly used in
handling plutonium need to be cleaned out.  The nature and amounts of material in the glove
boxes change with time as cleanup proceeds.  Some of the more frequent criticality infractions
occur under these circumstances.
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These situations are among those presenting some of the greatest difficulty for estimation
of criticality.  Not only is there uncertainty as to the important characteristics of individual items,
but interaction between items is very difficult to estimate.  Some of the most abstruse theory in
neutron physics deals with the magnitude of k  for sets of isolated but interacting regionseff

containing fissionable material.

Because of the nature of difficulties I have mentioned, it has become customary to base
criticality control in such circumstances on results of calculations with such codes as the Monte
Carlo type Keno. These calculations are made using extreme assumptions as to amounts and
distribution of fissionable material so as to bound all situations that might be encountered.  Limits
are set on amounts and characteristics of the materials to be dealt with.  In almost every real case
encountered in operations these limits are grossly conservative.  Safety is achieved, but at quite a
price.  Not only are operations limited severely, but workers come to develop a contempt for the
limits when criticality infractions do not lead to criticality accidents.  

One of my favorite stories in this regard dates to a time long ago, when my group at
Brookhaven was engaged in measuring criticality of lattices of slightly enriched uranium rods in
light water.  Of course, maximum reactivity could be achieved only when the rods were uniformly
arrayed in the moderator under optimum conditions.  We were told that dissolver limits at
Hanford were based on the reactivities we measured, although the geometrical and chemical
situation in the dissolvers were far from the optimum conditions we had used.  One of the brighter
technicians in the Hanford operation decided that dissolving could be speeded up if these
criticality limits were relaxed.  He was discovered tossing uranium slugs one by one into a barrel
of water.  The story goes that he was fired forthwith, and a new and higher criticality limit was
adopted for dissolver loadings.

How do we get out of this mess?  In some cases we can’t.  But I believe that there are
some possibilities.  In some cases conservatism can be relaxed.  

I have some examples of practices that date back to the fuel fabrication plant for which I
developed criticality limits a long time ago, that might be helpful.  There limits were based on two
principal assumptions which have come to be customary everywhere.  The first is that there
should be no single clusters of fissionable material (in that case flat plates of a uranium alloy) that
under any circumstances of geometry or neutron moderation by water could lead to a critical
state.  The second is that the individual clusters should be separated so that passive flooding
would not cause separate clusters to interact neutronically   The limits used in this connection
were established using a simple two-group calculation that had been benchmarked against data in
the literature on water-reflected uranium solutions.  A safety factor of 2.2 was applied to the
cross-sectional area of an individual cluster in accordance with requirements on double-batching. 
That led to a safe cross-sectional area of piles of plates, hence to a safe number of plates that
could be stacked anywhere.
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From then on control was established ergonomically.  The entire fuel fabrication plant was
divided into zones.  Typically each zone was the location of a single process stage, such as rolling,
a machining step, etc.  Fissionable material could be moved from one zone to another only in
carefully designed carts and by designated control personnel.  Carts were so designed that they
could carry alloy plates only in geometries meeting the safety criterion.  This was guaranteed by
their slanted trays which had fronts whose heights would only permit the maximum allowed
number of plates; plates above these would slide off onto the floor.  Carts were fitted with fenders
to prevent their coming too close together.  All material in zones could be stored only in the carts
that brought the material there, because no other storage possibility was provided.  Zones
contained no horizontal surfaces where items could be stacked.  All surfaces used for writing, for
instance, were slanted so that nothing could be left on them.  In some cases these design features
had to be modified to allow specific processes to be performed in a zone, but in each such case
another ergonomic layout was used to accomplish the safety objective.  All design was directed to
making processes easy to perform, but accidental criticality an impossibility.

The possibility of flooding is central to the safety criteria.  There is a subtle difference
between the two modes of possible flooding of single containers of plates and wholesale flooding
of a processing area possibly containing interacting containers.  Though we designed to avoid
consequences of either mode of flooding, the second is much less likely than the first, and we
could have relaxed the associated precautions if that had been of value.  Giving up the small
added benefit was just not worth it as far as ease of processing was concerned.

I draw several conclusions from experiences such as these.  First, we were lucky to be able
to design safety into the process at the very start.  That permitted us to institute a control system
that fit into operations in a natural way and took into account manufacturing needs.  Second, that
success in designing a system well suited to production was only possible through participation
with operating staff.  Third, the use of ergonomic methods was highly successful.  I never heard
any complaints that criticality requirements were hard to understand.  There was just no way they
could be misinterpreted or violated.  Naturally, there was no criticality infraction at all, at least
over the several years that I was involved.  Fourth, I found that simple paper and pencil type
theory was adequate for our purposes when it was adequately benchmarked against experiments. 
Of course, our demands on theory were not that involved, but I have always believed that it is
better to use simple benchmarked theory which you understand than complex analytical methods
that have never been tested under circumstances to which they are to be applied.  More on that
later.  Fifth, it is wise to understand the nature of the conservatism built into the control system. 
Some of them can probably be relaxed, either through arguments as to their utility or through
simple changes to design.  

I feel that some of these lessons are adaptable to other more complex problems faced in
the Department of Energy's operations today.  The possibility of introduction of ergonomic
methods is especially attractive, and so is the possibility of use of simpler computational methods.  
I have been actively pressing the case for the latter.
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Now for some further words on computational methods.  The staff of the Defense Nuclear
Facilities Safety Board has recently been looking into the state of computer codes used by various
adjuncts of the Department of Energy.  These are codes spanning numerous engineering fields. 
They have found what seems to be a pervasive problem of lack of configuration control of these
codes.  Nobody seems to own them.  There is a widespread lack of documentation of the codes as
they were first written and as they may have been changed with time, and a vacuum in information
on the degree of success in applications.  So far the criticality codes have not been among those
reviewed, but since all other codes that have been looked at have these problems, it should be
expected that they have the problems, too.

It would be useful to know the history of the Monte Carlo codes used in criticality
calculations, to determine how they may have been altered from any earlier versions, and whether
in their present form they have been benchmarked against experimental results falling in the
general range of their usage.  Always be careful of the old adage, “Garbage in, garbage out.”


